Moving Average Model Matlab Code
2.1 Modelos de média móvel (modelos MA) Modelos de séries temporais conhecidos como modelos ARIMA podem incluir termos autorregressivos e / ou termos de média móvel. Na Semana 1, aprendemos um termo autorregressivo em um modelo de série temporal para a variável x t é um valor retardado de x t. Por exemplo, um termo autorregressivo de atraso 1 é x t-1 (multiplicado por um coeficiente). Esta lição define termos de média móvel. Um termo de média móvel em um modelo de séries temporais é um erro passado (multiplicado por um coeficiente). Vamos (wt overset N (0, sigma2w)), significando que os w t são identicamente, distribuídos independentemente, cada um com uma distribuição normal com média 0 e a mesma variância. O modelo de média móvel de ordem 1, denotado por MA (1) é (xt mu wt theta1w) O modelo de média móvel de 2ª ordem, denotado por MA (2) é (xt mu wt theta1w theta2w) , Denotado por MA (q) é (xt mu wt theta1w theta2w pontos thetaqw) Nota. Muitos livros didáticos e programas de software definem o modelo com sinais negativos antes dos termos. Isso não altera as propriedades teóricas gerais do modelo, embora ele inverta os sinais algébricos de valores de coeficientes estimados e de termos (não-quadrados) nas fórmulas para ACFs e variâncias. Você precisa verificar o software para verificar se sinais negativos ou positivos foram utilizados para escrever corretamente o modelo estimado. R usa sinais positivos em seu modelo subjacente, como fazemos aqui. Propriedades Teóricas de uma Série de Tempo com um Modelo MA (1) Observe que o único valor não nulo na ACF teórica é para o atraso 1. Todas as outras autocorrelações são 0. Assim, uma ACF de amostra com uma autocorrelação significativa apenas no intervalo 1 é um indicador de um possível modelo MA (1). Para os estudantes interessados, provas destas propriedades são um apêndice a este folheto. Exemplo 1 Suponha que um modelo MA (1) seja x t 10 w t .7 w t-1. Onde (wt overset N (0,1)). Assim, o coeficiente 1 0,7. O ACF teórico é dado por Um gráfico deste ACF segue. O gráfico apenas mostrado é o ACF teórico para um MA (1) com 1 0,7. Na prática, uma amostra normalmente não proporciona um padrão tão claro. Usando R, simulamos n 100 valores de amostra usando o modelo x t 10 w t .7 w t-1 onde w t iid N (0,1). Para esta simulação, segue-se um gráfico de séries temporais dos dados da amostra. Não podemos dizer muito desse enredo. A ACF de amostra para os dados simulados segue. Observa-se que a amostra ACF não corresponde ao padrão teórico do MA subjacente (1), ou seja, que todas as autocorrelações para os atrasos de 1 serão 0 Uma amostra diferente teria uma ACF de amostra ligeiramente diferente, mostrada abaixo, mas provavelmente teria as mesmas características gerais. Propriedades teóricas de uma série temporal com um modelo MA (2) Para o modelo MA (2), as propriedades teóricas são as seguintes: Note que os únicos valores não nulos na ACF teórica são para os retornos 1 e 2. As autocorrelações para atrasos maiores são 0 . Assim, uma ACF de amostra com autocorrelações significativas nos intervalos 1 e 2, mas autocorrelações não significativas para atrasos maiores indica um possível modelo MA (2). Iid N (0,1). Os coeficientes são 1 0,5 e 2 0,3. Como este é um MA (2), o ACF teórico terá valores não nulos apenas nos intervalos 1 e 2. Valores das duas autocorrelações não nulas são Um gráfico do ACF teórico segue. Como quase sempre é o caso, dados de exemplo não vai se comportar tão perfeitamente como a teoria. Foram simulados n 150 valores de amostra para o modelo x t 10 w t .5 w t-1 .3 w t-2. Em que w t iid N (0,1). O gráfico da série de tempo dos dados segue. Como com o gráfico de série de tempo para os dados de amostra de MA (1), você não pode dizer muito dele. A ACF de amostra para os dados simulados segue. O padrão é típico para situações em que um modelo MA (2) pode ser útil. Existem dois picos estatisticamente significativos nos intervalos 1 e 2, seguidos por valores não significativos para outros desfasamentos. Note que devido ao erro de amostragem, o ACF de amostra não corresponde exactamente ao padrão teórico. ACF para modelos MA (q) gerais Uma propriedade dos modelos MA (q) em geral é que existem autocorrelações não nulas para os primeiros q lags e autocorrelações 0 para todos os retornos gt q. Não-unicidade de conexão entre os valores de 1 e (rho1) no modelo MA (1). No modelo MA (1), para qualquer valor de 1. O 1/1 recíproco dá o mesmo valor para Como exemplo, use 0,5 para 1. E então use 1 / (0,5) 2 para 1. Você obterá (rho1) 0,4 em ambas as instâncias. Para satisfazer uma restrição teórica chamada invertibilidade. Nós restringimos os modelos MA (1) para ter valores com valor absoluto menor que 1. No exemplo dado, 1 0,5 será um valor de parâmetro permitido, enquanto que 1 1 / 0,5 2 não. Invertibilidade de modelos MA Um modelo MA é dito ser inversível se for algébrica equivalente a um modelo de ordem infinita convergente. Por convergência, queremos dizer que os coeficientes de AR diminuem para 0 à medida que avançamos no tempo. Invertibilidade é uma restrição programada em séries temporais de software utilizado para estimar os coeficientes de modelos com MA termos. Não é algo que verificamos na análise de dados. Informações adicionais sobre a restrição de invertibilidade para modelos MA (1) são fornecidas no apêndice. Teoria Avançada Nota. Para um modelo MA (q) com um ACF especificado, existe apenas um modelo invertible. A condição necessária para a invertibilidade é que os coeficientes tenham valores tais que a equação 1- 1 y-. - q y q 0 tem soluções para y que caem fora do círculo unitário. Código R para os Exemplos No Exemplo 1, traçamos o ACF teórico do modelo x t 10w t. 7w t-1. E depois simularam n 150 valores deste modelo e traçaram a série temporal da amostra e a amostra ACF para os dados simulados. Os comandos R utilizados para traçar o ACF teórico foram: acfma1ARMAacf (mac (0,7), lag. max10) 10 atrasos de ACF para MA (1) com theta1 0,7 lags0: 10 cria uma variável chamada atrasos que varia de 0 a 10. trama (Hg) adiciona um eixo horizontal ao gráfico O primeiro comando determina o ACF e o armazena em um objeto (a0) Chamado acfma1 (nossa escolha de nome). O comando de plotagem (o terceiro comando) traça defasagens em relação aos valores de ACF para os retornos 1 a 10. O parâmetro ylab rotula o eixo y eo parâmetro principal coloca um título no gráfico. Para ver os valores numéricos do ACF basta usar o comando acfma1. A simulação e as parcelas foram feitas com os seguintes comandos. Xcarima. sim (n150, lista (mac (0.7))) Simula n 150 valores de MA (1) xxc10 adiciona 10 para fazer média 10. Padrão de simulação significa 0. plot (x, typeb, mainSimulated MA (1) dados) Acf (x, xlimc (1,10), mainACF para dados de amostras simulados) No Exemplo 2, traçamos o ACF teórico do modelo xt 10 wt. 5 w t-1 .3 w t-2. E depois simularam n 150 valores deste modelo e traçaram a série temporal da amostra e a amostra ACF para os dados simulados. Os comandos R utilizados foram acfma2ARMAacf (mac (0,5,0,3), lag. max10) acfma2 lags0: 10 parcela (atrasos, acfma2, xlimc (1,10), ylabr, tipoh, ACF principal para MA (2) com theta1 0,5, (X, typeb, principal série MA (2) simulada) acf (x, xlimc (1,10), x2) MainACF para dados simulados de MA (2) Apêndice: Prova de Propriedades de MA (1) Para estudantes interessados, aqui estão as provas para propriedades teóricas do modelo MA (1). Quando h 1, a expressão anterior 1 w 2. Para qualquer h 2, a expressão anterior 0 (x) é a expressão anterior x (x) A razão é que, por definição de independência do wt. E (w k w j) 0 para qualquer k j. Além disso, porque w t tem média 0, E (w j w j) E (w j 2) w 2. Para uma série de tempo, aplique este resultado para obter o ACF fornecido acima. Um modelo inversível MA é aquele que pode ser escrito como um modelo de ordem infinita AR que converge para que os coeficientes AR convergem para 0 como nos movemos infinitamente no tempo. Bem demonstrar invertibilidade para o modelo MA (1). Em seguida, substituimos a relação (2) para wt-1 na equação (1) (3) (zt wt theta1 (z-theta1w) wt theta1z-theta2w) No tempo t-2. A equação (2) torna-se Então substituimos a relação (4) para wt-2 na equação (3) (zt wt theta1 z - theta21w wt theta1z - theta21 (z - theta1w) wt theta1z-theta12z theta31w) Se continuássemos Infinitamente), obteríamos o modelo AR de ordem infinita (zt wt theta1 z - theta21z theta31z - theta41z dots) Observe, no entanto, que se 1 1, os coeficientes multiplicando os desfasamentos de z aumentarão (infinitamente) Tempo. Para evitar isso, precisamos de 1 lt1. Esta é a condição para um modelo MA (1) invertido. Infinite Order MA model Na semana 3, bem ver que um modelo AR (1) pode ser convertido em um modelo de ordem infinita MA: (xt - mu wt phi1w phi21w pontos phik1 w dots sum phij1w) Esta soma de termos de ruído branco passado é conhecido Como a representação causal de um AR (1). Em outras palavras, x t é um tipo especial de MA com um número infinito de termos remontando no tempo. Isso é chamado de ordem infinita MA ou MA (). Uma ordem finita MA é uma ordem infinita AR e qualquer ordem finita AR é uma ordem infinita MA. Lembre-se na Semana 1, observamos que uma exigência para um AR estacionário (1) é que 1 lt1. Vamos calcular o Var (x t) usando a representação causal. Esta última etapa usa um fato básico sobre séries geométricas que requer (phi1lt1) caso contrário, a série diverge. NavigationDocumentation é a média incondicional do processo, e x03C8 (L) é um polinômio racional de operador de lag de grau infinito, (1 x03C8 1 L x03C8 2 L 2 x 2026). Nota: A propriedade Constant de um objeto modelo arima corresponde a c. E não a média incondicional 956. Por decomposição de Wolds 1. A equação 5-12 corresponde a um processo estocástico estacionário desde que os coeficientes x03C8 i sejam absolutamente somaveis. Este é o caso quando o polinômio AR, x03D5 (L). É estável. O que significa que todas as suas raízes estão fora do círculo unitário. Além disso, o processo é causal desde que o polinômio MA é invertido. O que significa que todas as suas raízes estão fora do círculo unitário. Econometrics Toolbox reforça a estabilidade e a invertibilidade dos processos ARMA. Quando você especifica um modelo ARMA usando arima. Você obtém um erro se você inserir coeficientes que não correspondem a um polinômio AR estável ou polinômio MA reversível. Similarmente, a estimativa impõe restrições de estacionaridade e de invertibilidade durante a estimativa. Referências 1 Wold, H. Um estudo na análise de séries estacionárias do tempo. Uppsala, Suécia: Almqvist amp Wiksell, 1938. Selecione seu PaísDocumentação tsmovavg saída tsmovavg (tsobj, s, lag) retorna a média móvel simples para o objeto de série de tempo financeiro, tsobj. Lag indica o número de pontos de dados anteriores usados com o ponto de dados atual ao calcular a média móvel. A saída tsmovavg (vetor, s, lag, dim) retorna a média móvel simples para um vetor. Lag indica o número de pontos de dados anteriores usados com o ponto de dados atual ao calcular a média móvel. A saída tsmovavg (tsobj, e, timeperiod) retorna a média móvel ponderada exponencial para a série de tempo financeiro objeto, tsobj. A média móvel exponencial é uma média móvel ponderada, em que timeperiod especifica o período de tempo. As médias móveis exponenciais reduzem o desfasamento aplicando mais peso aos preços recentes. Por exemplo, uma média móvel exponencial de 10 períodos pondera o preço mais recente em 18,18. Percentual Exponencial 2 / (TIMEPER 1) ou 2 / (WINDOWSIZE 1). Saída tsmovavg (vetor, e, timeperiod, dim) retorna a média móvel ponderada exponencial para um vetor. A média móvel exponencial é uma média móvel ponderada, em que timeperiod especifica o período de tempo. As médias móveis exponenciais reduzem o desfasamento aplicando mais peso aos preços recentes. Por exemplo, uma média móvel exponencial de 10 períodos pondera o preço mais recente em 18,18. (2 / (intervalo de tempo 1)). A saída tsmovavg (tsobj, t, numperiod) retorna a média móvel triangular para a série de tempo financeiro objeto, tsobj. A média móvel triangular alisa os dados. Tsmovavg calcula a primeira média móvel simples com a largura da janela de ceil (numperíodo 1) / 2. Em seguida, calcula uma segunda média móvel simples na primeira média móvel com o mesmo tamanho de janela. Saída tsmovavg (vetor, t, numperiod, dim) retorna a média móvel triangular para um vetor. A média móvel triangular alisa os dados. Tsmovavg calcula a primeira média móvel simples com a largura da janela de ceil (numperíodo 1) / 2. Em seguida, calcula uma segunda média móvel simples na primeira média móvel com o mesmo tamanho de janela. A saída tsmovavg (tsobj, w, weights) retorna a média móvel ponderada para o objeto da série temporal financeira, tsobj. Fornecendo pesos para cada elemento na janela em movimento. O comprimento do vetor de peso determina o tamanho da janela. Se fatores de peso maiores forem usados para preços mais recentes e fatores menores para preços anteriores, a tendência é mais responsiva a mudanças recentes. A saída tsmovavg (vetor, w, pesos, dim) retorna a média móvel ponderada para o vetor fornecendo pesos para cada elemento na janela em movimento. O comprimento do vetor de peso determina o tamanho da janela. Se fatores de peso maiores forem usados para preços mais recentes e fatores menores para preços anteriores, a tendência é mais responsiva a mudanças recentes. A saída tsmovavg (tsobj, m, numperiod) retorna a média móvel modificada para o objeto da série de tempo financeiro, tsobj. A média móvel modificada é semelhante à média móvel simples. Considere o argumento numperiod como o atraso da média móvel simples. A primeira média móvel modificada é calculada como uma média móvel simples. Os valores subseqüentes são calculados adicionando o novo preço e subtraindo a última média da soma resultante. A saída tsmovavg (vetor, m, numperiod, dim) retorna a média móvel modificada para o vetor. A média móvel modificada é semelhante à média móvel simples. Considere o argumento numperiod como o atraso da média móvel simples. A primeira média móvel modificada é calculada como uma média móvel simples. Os valores subseqüentes são calculados adicionando o novo preço e subtraindo a última média da soma resultante. Dim 8212 dimensão para operar ao longo de inteiro positivo com valor 1 ou 2 Dimensão para operar ao longo, especificado como um inteiro positivo com um valor de 1 ou 2. dim é um argumento de entrada opcional, e se não for incluído como uma entrada, o padrão Valor 2 é assumido. O padrão de dim 2 indica uma matriz orientada a linha, em que cada linha é uma variável e cada coluna é uma observação. Se dim 1. a entrada é assumida como sendo um vetor de coluna ou uma matriz orientada a coluna, onde cada coluna é uma variável e cada linha uma observação. E 8212 Indicador para vetor de caracteres de média móvel exponencial A média móvel exponencial é uma média móvel ponderada, em que timeperiod é o período de tempo da média móvel exponencial. As médias móveis exponenciais reduzem o desfasamento aplicando mais peso aos preços recentes. Por exemplo, uma média móvel exponencial de 10 períodos pondera o preço mais recente em 18,18. Porcentagem Exponencial 2 / (TIMEPER 1) ou 2 / (WINDOWSIZE 1) período de tempo 8212 Comprimento do período de tempo não negativo inteiro Selecione seu PaísPara gerar o modelo Autoregressivo, temos o comando aryule () e também podemos usar filtrosEstimando o modelo AR. Mas como faço para gerar MA modelo Por exemplo, alguém pode mostrar como gerar MA (20) modelo eu não poderia encontrar qualquer técnica adequada para fazê-lo. O ruído é gerado a partir de um mapa não-linear. Assim, o modelo MA irá regredir sobre termos epsilon. Q1: Será extremamente útil se o código e a forma funcional de um modelo MA forem mostrados preferencialmente MA (20) usando o modelo de ruído acima. Q2: Isto é como eu gerou um AR (20) usando ruído aleatório, mas não sei como usar a equação acima como o ruído em vez de usar rand para ambos MA e AR pediu Aug 15 14 às 17:30 Meu problema é o uso de filtro. Eu não estou familiarizado com conceito de função de transferência, mas você mencionou que numerador B39s são os coeficientes de MA, assim o B deve ser os 20 elementos e não A39s. Em seguida, vamos dizer que o modelo tem um intercepto de 0,5, você pode mostrar com o código como eu posso criar um modelo de MA com 0,5 interceptar (como mencionar a intercepção no filtro () e usando a entrada definida na minha pergunta por favor Obrigado No filtro de filtro (b, a, X) filtra os dados no vetor X com o filtro descrito pelo vetor de coeficiente de numerador B eo vetor do coeficiente do denominador a. Se a (1) não é igual a 1, o filtro normaliza os coeficientes do filtro por a (1). Se a (1) é igual a 0, o filtro retorna um erro. quot (mathworks / help / matlab / Ref / filter) esta é a área do problema como eu don39t entender como especificar o a, b (coeficientes de filtro) quando há um intercepto de dizer 0,5 ou intercepto de 1.Could você por favor mostre um exemplo de MA com filtro e um não - zero interceptar usando a entrada que eu mencionei na pergunta ndash SKM Aug 19 14 às 17: 45Para gerar modelo auto-regressivo, temos o comando aryule () e também podemos usar filtrosEstimating modelo AR. Mas como faço para gerar MA modelo Por exemplo, alguém pode mostrar como gerar MA (20) modelo eu não poderia encontrar qualquer técnica adequada para fazê-lo. O ruído é gerado a partir de um mapa não-linear. Assim, o modelo MA irá regredir sobre termos epsilon. Q1: Será extremamente útil se o código e a forma funcional de um modelo MA forem mostrados preferencialmente MA (20) usando o modelo de ruído acima. Q2: Isto é como eu gerou um AR (20) usando ruído aleatório, mas não sei como usar a equação acima como o ruído em vez de usar rand para ambos MA e AR pediu Aug 15 14 às 17:30 Meu problema é o uso de filtro. Eu não estou familiarizado com conceito de função de transferência, mas você mencionou que numerador B39s são os coeficientes de MA, assim o B deve ser os 20 elementos e não A39s. Em seguida, vamos dizer que o modelo tem um intercepto de 0,5, você pode mostrar com o código como eu posso criar um modelo de MA com 0,5 interceptar (como mencionar a intercepção no filtro () e usando a entrada definida na minha pergunta por favor Obrigado No filtro de filtro (b, a, X) filtra os dados no vetor X com o filtro descrito pelo vetor de coeficiente de numerador B eo vetor do coeficiente do denominador a. Se a (1) não for igual a 1, o filtro normaliza os coeficientes do filtro por a (1) Se a (1) é igual a 0, o filtro retorna um erro. quot (mathworks / help / matlab / Ref / filter) esta é a área do problema como eu don39t entender como especificar o a, b (filtro coeficientes), quando há um intercepto de dizer 0,5 ou interceptação de 1.Could você por favor mostre um exemplo de MA com filtro e um não - zero interceptar usando a entrada que eu mencionei na pergunta ndash SKM Aug 19 14 at 17:45
Comments
Post a Comment